Network connectivity

[1]:
import pandas as pd

blocks_gdf = pd.read_pickle('./../../data/saint_petersburg/blocks.pickle')
accessibility_matrix = pd.read_pickle('./../../data/saint_petersburg/accessibility_matrix_intermodal.pickle')

We can actually use any accessibility from network.accessibility module

[2]:
from blocksnet.analysis.network.accessibility import mean_accessibility

accessibility_df = mean_accessibility(accessibility_matrix)
accessibility_df.head()
/home/vasilstar/masterplanning/.venv/lib/python3.10/site-packages/pandas/io/formats/format.py:1458: RuntimeWarning: overflow encountered in cast
  has_large_values = (abs_vals > 1e6).any()
[2]:
mean_accessibility
0 102.875
1 101.875
2 135.875
3 138.500
4 124.000
[4]:
from blocksnet.analysis.network import calculate_connectivity

connectivity_df = calculate_connectivity(accessibility_df)
connectivity_df.head()
[4]:
connectivity
0 0.009721
1 0.009816
2 0.007360
3 0.007220
4 0.008065
[5]:
blocks_gdf[['geometry']].join(connectivity_df).plot('connectivity', legend=True, figsize=(10,8)).set_axis_off()
../../../_images/examples_analysis_network_connectivity_5_0.png