- class Simulator(config: Config, mode: str)
Bases:
object
Custom Environment that follows gym interface
- get_user_data(user_idx: int) Tuple[int, numpy.typing.NDArray, numpy.typing.NDArray]
Get user data by user index
- Parameters:
user_idx – (int) index of user
- Returns:
(Tuple[int, NDArray, NDArray]) User ID, Array with items, Array with Rates
- step(user_id: int, recommended_item_id: int) int
Executes a step in the environment by applying an action. Returns the new observation and reward.
- Parameters:
user_id – Current agent (user)
recommended_item_id – Action (selected item)
- Returns:
reward (0 if not interaction, attribute otherwise)