- class BidirectionalOneShotIterator(dataloader_head: torch.utils.data.DataLoader, dataloader_tail: torch.utils.data.DataLoader)
Bases:
object
Iterator over the data
- static one_shot_iterator(dataloader: torch.utils.data.DataLoader) Generator
Transform a PyTorch Dataloader into python iterator
- Parameters:
dataloader – Dataloader
- Returns:
Generator of data
- class TestDataset(*args: Any, **kwargs: Any)
Bases:
Dataset
Dataset with test data
- static collate_fn(data: List[Any]) Tuple[torch.Tensor, torch.Tensor, str]
Collate
- Parameters:
data – data to collate
- Returns:
(Tuple[Tensor, Tensor, Tensor, str]) positive_sample, negative_sample, mode
- class TrainDataset(*args: Any, **kwargs: Any)
Bases:
Dataset
Dataset with training data
- static collate_fn(data: List[Any]) Tuple[torch.Tensor, torch.Tensor, torch.Tensor, str]
Collate
- Parameters:
data – data to collate
- Returns:
(Tuple[Tensor, Tensor, Tensor, str]) positive_sample, negative_sample, subsample_weight, mode
- get_info(triples: Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]], dataset: TrainDataset | None = None, do_count: bool = False) Tuple[int, int, int, int, int, str]
Get dataset info
- Parameters:
dataset – Dataset
triples – (Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]) Dicts with triples splitted by train test and validation
- Returns:
Tuple[number of entities, numbers of relations, volume train, volume validdation, volume_test, info_log]