Strelka morphotypes

[2]:
import pandas as pd

blocks_gdf = pd.read_pickle('./../../data/saint_petersburg/blocks.pickle')
[3]:
from blocksnet.analysis.indicators import calculate_density_indicators

density_df = calculate_density_indicators(blocks_gdf)
density_df.head()
[3]:
site_area footprint_area build_floor_area living_area non_living_area fsi gsi mxi l osr share_living share_non_living
0 0.032316 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 NaN NaN inf NaN NaN
1 137101.088247 69.018103 69.018103 0.000000 69.018103 0.000503 0.000503 0.000000 1.000000 1985.451134 0.000000 1.000000
2 95239.084434 5853.863274 6106.759644 4197.188633 1909.571011 0.064120 0.061465 0.687302 1.043202 14.637095 0.716995 0.326207
3 125919.330984 4214.828165 4375.483259 3033.795607 1341.687653 0.034748 0.033472 0.693362 1.038117 27.815100 0.719791 0.318326
4 169860.164494 13392.846325 31242.324144 20860.965881 10381.358263 0.183930 0.078846 0.667715 2.332762 5.008184 1.557620 0.775142
[6]:
from blocksnet.analysis.morphotypes import get_strelka_morphotypes

strelka_df = get_strelka_morphotypes(density_df)
strelka_df.head()
[6]:
l fsi mxi morphotype
0 0.000000 0.000000 0.000000 NaN
1 1.000000 0.000503 0.000000 low-rise non-residential
2 1.043202 0.064120 0.687302 individual residential
3 1.038117 0.034748 0.693362 individual residential
4 2.332762 0.183930 0.667715 low-rise model
[8]:
blocks_gdf[['geometry']].join(strelka_df).plot(column='morphotype', legend=True, figsize=(10,8)).set_axis_off()
../../../_images/examples_analysis_morphotypes_strelka_4_0.png