- class EmbeddingFactory
Bases:
object
Producing unsupervised embeddings for a given dataset
- build_embeddings(loss_name: str, conv: str, data: List[Graph], device: torch.device, number_of_trials: int, tune_out: bool = False) numpy.typing.NDArray
Build embeddings based on passed dataset and settings
- Parameters:
loss_name – (str): Name of loss function for embedding learning in GeomGCN layer
conv – (str) Name of convolution used in unsupervied embeddings
data – (Graph): Input Graph
device – (device): Device ‘cuda’ or ‘cpu’
(int) (number_of_trials) – Number of trials for optuna tuning embeddings
(bool) (tune_out) – Flag if you want tune out layer of embeddings
- Returns:
(NDArray) embeddings NumPy array of (N_nodes) x (N_emb_dim)